Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171442, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453085

RESUMO

Synergistic remediation of heavy metal (HM) contaminated soil using beneficial microorganisms (BM) and plants is a common and effective in situ bioremediation method. However, the shortcomings of this approach are the low colonisation of BM under high levels of heavy metal stress (HMS) and the poor state of plant growth. Previous studies have overlooked the potential of biochar to mitigate the above problems and aid in-situ remediation. Therefore, this paper describes the characteristics and physicochemical properties of biochar. It is proposed that biochar enhances plant resistance to HMS and aids in situ bioremediation by increasing colonisation of BM and HM stability. On this basis, the paper focuses on the following possible mechanisms: specific biochar-derived organic matter regulates the transport of HMs in plants and promotes mycorrhizal colonisation via the abscisic acid signalling pathway and the karrikin signalling pathway; promotes the growth-promoting pathway of indole-3-acetic acid and increases expression of the nodule-initiating gene NIN; improvement of soil HM stability by ion exchange, electrostatic adsorption, redox and complex precipitation mechanisms. And this paper summarizes guidelines on how to use biochar-assisted remediation based on current research for reference. Finally, the paper identifies research gaps in biochar in the direction of promoting beneficial microbial symbiotic mechanisms, recognition and function of organic molecules, and factors affecting practical applications.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Solo/química , Poluentes do Solo/análise , Metais Pesados/análise , Carvão Vegetal/química , Plantas
2.
Planta ; 257(6): 108, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133783

RESUMO

MAIN CONCLUSION: This review summarizes the anti-stress effects of flavonoids in plants and highlights its role in the regulation of polar auxin transport and free radical scavenging mechanism. As secondary metabolites widely present in plants, flavonoids play a vital function in plant growth, but also in resistance to stresses. This review introduces the classification, structure and synthetic pathways of flavonoids. The effects of flavonoids in plant stress resistance were enumerated, and the mechanism of flavonoids in plant stress resistance was discussed in detail. It is clarified that plants under stress accumulate flavonoids by regulating the expression of flavonoid synthase genes. It was also determined that the synthesized flavonoids are transported in plants through three pathways: membrane transport proteins, vesicles, and bound to glutathione S-transferase (GST). At the same time, the paper explores that flavonoids regulate polar auxin transport (PAT) by acting on the auxin export carrier PIN-FORMED (PIN) in the form of ATP-binding cassette subfamily B/P-glycoprotein (ABCB/PGP) transporter, which can help plants to respond in a more dominant form to stress. We have demonstrated that the number and location of hydroxyl groups in the structure of flavonoids can determine their free radical scavenging ability and also elucidated the mechanism by which flavonoids exert free radical removal in cells. We also identified flavonoids as signaling molecules to promote rhizobial nodulation and colonization of arbuscular mycorrhizal fungi (AMF) to enhance plant-microbial symbiosis in defense to stresses. Given all this knowledge, we can foresee that the in-depth study of flavonoids will be an essential way to reveal plant tolerance and enhance plant stress resistance.


Assuntos
Flavonoides , Plantas , Estresse Fisiológico , Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo , Micorrizas , Plantas/metabolismo , Simbiose
3.
Sci Total Environ ; 869: 161871, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708839

RESUMO

Understanding the dynamic changes of plant biomolecules is vital for exploring their mechanisms in the environment. Molecular dynamics (MD) simulation has been widely used to study structural evolution and corresponding properties of plant biomolecules at the microscopic scale. Here, this review (i) outlines structural properties of plant biomolecules, and the crucial role of MD simulation in advancing studies of the biomolecules; (ii) describes the development of MD simulation in plant biomolecules, determinants of simulation, and analysis parameters; (iii) introduces the applications of MD simulation in plant biomolecules, including the response of the biomolecules to multiple stresses, their roles in corrosive environments, and their contributions in improving environmental health; (iv) reviews techniques integrated with MD simulation, such as molecular biology, quantum mechanics, molecular docking, and machine learning modeling, which bridge gaps in MD simulation. Finally, we make suggestions on determination of force field types, investigation of plant biomolecule mechanisms, and use of MD simulation in combination with other techniques. This review provides comprehensive summaries of the mechanisms of plant biomolecules in the environment revealed by MD simulation and validates it as an applicable tool for bridging gaps between macroscopic and microscopic behavior, providing insights into the wide application of MD simulation in plant biomolecules.


Assuntos
Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
4.
Int J Nanomedicine ; 17: 4947-4960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275479

RESUMO

Introduction: Zinc oxide nanoparticles (ZnO NPs) participate in all aspects of our lives, but with their wide application, more and more disadvantages are exposed. The goal of this study was to investigate the toxicity of ZnO NPs in female mice ovaries and explore its potential mechanism. Methods: In this study, adult female mice were orally exposed to 0, 100, 200, and 400 mg/kg ZnO NPs for 7 days. We explored the underlying mechanisms via the intraperitoneal injection of N-acetyl-cysteine (NAC), an inhibitor of oxidative stress, and salubrinal (Sal), an inhibitor of endoplasmic reticulum (ER) stress. Results: The results indicated that serum estradiol and progesterone levels declined greatly with increasing ZnO NPs dosage. Hematoxylin and eosin (HE) staining revealed increased atretic follicles and exfoliated follicular granulosa cells. Moreover, at the transcriptional level, antioxidant-related genes such as Keap1 and Nrf2, and ER stress-related genes PERK, eIF2α, and ATF4 were markedly upregulated. In addition, the expression of Caspase12, Caspase9, and Caspase3, which are genes related to apoptosis, was also upregulated in all ZnO NPs treatment groups. Serum malondialdehyde (MDA) content was remarkably up-regulated, whereas superoxide dismutase (SOD) activity was down-regulated. The 400 mg/kg ZnO NPs treatment group suffered the most substantial harm. However, ovarian damage was repaired when NAC and Sal were added to this group. Conclusion: ZnO NPs had toxic effects on the ovary of female mice, which were due to oxidative stress, ER stress, and the eventual activation of apoptosis.


Assuntos
Nanopartículas , Óxido de Zinco , Feminino , Camundongos , Animais , Óxido de Zinco/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Ovário , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/farmacologia , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Progesterona , Estresse Oxidativo , Malondialdeído/metabolismo , Acetilcisteína/farmacologia , Superóxido Dismutase/metabolismo , Estradiol/farmacologia
5.
Regen Med ; 16(10): 949-962, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34585967

RESUMO

The stem cell origin theory of endometriosis (EMS) is a significant area of new research but the sources of this have yet to be adequately summarized. Existing treatments for EMS are commonly associated with a high recurrence rate; consequently, there is an urgent need to develop new therapeutic measures for the future treatment of this disease from the view of stem cells and gene therapy. Recently, we described the evidence for the potential sources of EMS stem cells and other key molecules participating in the establishment of lesions, and predict the miRNAs that target these key genes via bioinformatics analysis for further research. This review highlights the origin of EMS stem cells and potential therapy targets.


Assuntos
Endometriose , Biologia Computacional , Endometriose/terapia , Feminino , Humanos , Células-Tronco
6.
Ecotoxicol Environ Saf ; 206: 111393, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33010597

RESUMO

Human were given a lot of opportunities to ingest TiO2 NPs in the environment. Children have low, sensitive intestinal tolerance, and they could be exposed to higher levels of TiO2 NPs than adults. Few studies have been conducted on the interaction between TiO2 NPs and juvenile intestine phase models. Thus, in this work, weaning rats were orally exposed to TiO2 NPs for 7 and 14 days. Results indicate that Ti accumulated in the intestine, liver, and feces. Inflammatory infiltration damage was observed in the colonic epithelial tissue, and gut microbiota fluctuated with a decreased abundance of Lactobacilli in feces. Oral supplementation with Lactobacillus rhamnosus GG (LGG) lessened TiO2 NPs-induced colonic inflammatory injury, which might due to downregulation of nuclear factor kappa-B (NF-κB). Meanwhile, LGG maintained normal intestinal microbiome homeostasis, thereby improving TiO2 NPs-induced colon injury in juvenile rats. Moreover, fecal microbiota transplant (FMT) experiment indicated possible TiO2 NPs-induced intestinal microbiota disorder led to colonic inflammation. Our works suggested the urgent need for additional studies on the risk safety assessment, mechanism, and prevention of juvenile health damage from exposure to TiO2 NPs.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Nanopartículas/toxicidade , Probióticos/uso terapêutico , Titânio/toxicidade , Adulto , Animais , Criança , Fezes/química , Fezes/microbiologia , Feminino , Homeostase , Humanos , Inflamação , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nanopartículas/metabolismo , Ratos , Titânio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...